Cardiometabolic interventions – focus on transcriptional regulators

REVIEW, August 2013, VOL II ISSUE III, ISSN 2042-4884
10.5083/ejcm.20424884.102 , Cite or Link Using DOI
Creating a Digital Object Identifier Link

A digital object identifier (DOI) can be used to cite and link to electronic documents. A DOI is guaranteed never to change, so you can use it to link permanently to electronic documents.

To find a document using a DOI

  1. Copy the DOI of the document you want to open.
    The correct format for citing a DOI is as follows: doi:10.1016/S0140-6736(08)61345-8
  2. Open the following DOI site in your browser:
    dx.doi.org
  3. Enter the entire DOI citation in the text box provided, and then click Go.
    The document that matches the DOI citation will display in your browser window.

The DOI scheme is administered by the International DOI Foundation. Many of the world's leading publishers have come together to build a DOI-based document linking scheme known as CrossRef.

Joshua T Chai MRCP, Robin P Choudhury DM

Cardiovascular disease (CVD) remains the largest healthcare burden in the Western world; and the increasing prevalence of type II diabetes mellitus, at least partially driven by a trend in lifestyle changes associated with global economic development, is likely to fuel this CVD burden worldwide. Over the past two decades, there has been an increased awareness of the convergence of risk factors contributing to both cardiovascular disease and diabetes leading to the concept of the metabolic syndrome, and the realisation of the opportunity to intervene at this intersection to simultaneously target CVD and metabolic dysfunction. This brings together the fields of cardiovascular medicine, diabetology, and increasingly clinical immunology for a unified and concerted effort to reduce risk for both conditions simultaneously. The discovery of the targeted pathways of drugs already in clinical use such as fibrates and thiazolidinediones (TZD) has led to accelerated basic and clinical
research into selective and dual PPAR-α and PPAR-γ agonists, which can theoretically target glucose, lipid and lipoprotein metabolism, as well as potentially exerting inhibitoryeffects in vascular inflammation, all of which might be predicted to reduce atherosclerosis. In this article, we will discuss the basic science as well as recent clinical development in the pursuit of optimal cardiometabolic intervention along with insight into strategies for future drug development.